Product

You are given positive integers $n$ ( $n \le 10^9$), $m$ ( $m \le 2 \times 10^9$), $p$ ($p \le 2 \times 10^9$) and you need to calculate the following product modulo $p$.

Input

Each test file contains a single test case. In each test file:

There are three positive integers $n$, $m$, $p$ which are separated by spaces. It is guaranteed that $p$ is a prime number.

Output

An integer representing your answer.

样例输入1

1
2 2 1000000007

样例输出1

1
128

样例输入2

1
233 131072 4894651

样例输出2

1
748517

样例输入3

1
1000000000 999999997 98765431

样例输出3

1
50078216

题意

请看题目描述

解决方案

对原式进行化简:

先考虑指数部分:

首先考虑后面一部分,可以用杜教筛求出其前缀和,回顾一下杜教筛的推导过程:

其中 $g(n)$ 是需要我们自己构造的函数。

用杜教筛求 $\phi(n)$ 的前缀和时,我们令 $g(n) = I(n)$ ,则 $h(n) = id(n)$ ,所以有:

后面一部分可以用杜教筛分块了,那前面一部分的前缀和呢?

推导如下:

之后,这一部分也可以分块解决了,至此,此题公式推导完毕。

但是还没有结束,因为我们只是处理了指数部分,实际要求的是一个乘方。很明显感觉到,这个指数是会爆 long long 的,那么就要考虑欧拉降幂,题目也明说了答案对 $p$ 取模,且 $p$ 是一个质数,所以必有 $\gcd(m,p)=1$ ,那么结合欧拉降幂的公式,可得:

所以在公式中分块求和的时候记得对 $p - 1$ 取模,最后再跑一个快速幂就好了。

代码

注意要把 $k\cdot d(k)$ 也筛出来一部分,不然会 T。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int maxn = 8e6 + 10;

ll mod;
bool vis[maxn];
int prime[maxn];
ll phi[maxn];
ll d[maxn];
int low[maxn];
int tot;

unordered_map<int, ll> mp;

void eular() {
vis[0] = vis[1] = true;
phi[1] = d[1] = 1;
for (int i = 2; i < maxn; i++) {
if (!vis[i]) {
prime[tot++] = i;
phi[i] = i - 1;
d[i] = 2;
low[i] = 1;
}
for (int j = 0; j < tot && i * prime[j] < maxn; j++) {
vis[i * prime[j]] = true;
if (i % prime[j]) {
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
d[i * prime[j]] = d[i] * 2;
low[i * prime[j]] = 1;
} else {
phi[i * prime[j]] = phi[i] * prime[j];
d[i * prime[j]] = d[i] / (low[i] + 1) * (low[i] + 2);
low[i * prime[j]] = low[i] + 1;
break;
}
}
}
for (int i = 1; i < maxn; i++) {
phi[i] = (phi[i - 1] + phi[i]) % mod;
d[i] = (i * d[i] + d[i - 1]) % mod;
}
}

ll get_sum(int x) {
if (x < maxn) {
return d[x];
}
ll ans = 0;
for (int l = 1, r; l <= x; l = r + 1) {
r = x / (x / l);
ll t1 = (1ll * (l + r) * (r - l + 1) / 2) % mod;
ll t2 = (1ll * (x / l) * (x / l + 1) / 2) % mod;
ans = (ans + t1 * t2) % mod;
}
return ans;
}

ll djs_phi(int x) {
if (x < maxn) {
return phi[x];
}
if (mp.count(x)) {
return mp[x];
}
ll ans = 0;
for (int l = 2, r; l <= x; l = r + 1) {
r = x / (x / l);
ans += (r - l + 1) * djs_phi(x / l) % mod;
ans %= mod;
}
ll tmp = (1ll * x * (x + 1) / 2) % mod;
ans = (tmp - ans + mod) % mod;
return mp[x] = ans;
}

ll quick_mod(ll a, ll b, ll c) {
a %= c;
ll ans = 1;
while (b) {
if (b & 1) {
ans = ans * a % c;
}
a = a * a % c;
b >>= 1;
}
return ans;
}

int main() {
int n, m, p;
scanf("%d%d%d", &n, &m, &p);
mod = p - 1;
eular();
ll sum = 0;
for (int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
ll t1 = get_sum(r) - get_sum(l - 1);
t1 = (t1 + mod) % mod;
ll t2 = 2 * djs_phi(n / l) - 1;
sum = (sum + t1 * t2) % mod;
}
printf("%lld\n", quick_mod(m, sum, p));
return 0;
}